Generic top-level domain
New gTLD Program
GeoTLD
Brand TLD
New gTLD Generic Applications
Qt License
"No QtAccount credentials found. Please login via the maintenance tool of the SDK."
Login completed to Qt Account: "xxx@yyy.ch"
Saving Qt Account settings to file: "/home/andreas/.local/share/Qt/qtaccount.ini"
License added. License id [ xxxxxxxxx ] License schema [ "Supported Evaluation" ] Licensed products [ "Device Creation" ] Licensed platforms [ ("X11", "Embedded Linux", "Windows", "Mac", "Embedded Windows", "Android", "QNX", "VxWorks", "INTEGRITY", "iOS", "WinRT", "Embedded Android") ] License expiry date [ QDate("2019-10-19") ]
Saving licenses to file: "/home/andreas/.local/share/Qt/qtlicenses.ini"
linux.conf.au 2019 — Christchurch, New Zealand
Linux Containers Project (LXC) und Docker
Ingenieur Büros
Zühlke Engineering AG, Schlieren (Zürich)
Helbling Holding AG, Hohlstrasse 614, Zürich, Engineering- und Consulting-Kompetenzen
ALTRAN, Beratungsunternehmen, Technologieberatung
Accenture, Managementberatungs-, Technologie- und Outsourcing-Dienstleister
KPMG, Unternehmens- bzw. Managementberatung
TSM_BusAn
How to save (and load) datasets in R: An overview
The Trouble with Tibbles
Tibble Data Format in R: Best and Modern Way to Work with Your Data
Wikipedia
Statistik
Stochastik
Mathematische/induktive Statistik (beurteilende Statistik)
Deskriptive Statistik (beschreibende Statistik)
Grundgesamtheit (Population! Gesamterhebungsumfang)
Schätztheorie
Schätzfunktion
Schätzmethode (Schätzverfahren)
R
PH525x series – Biomedical Data Science
Procedural Languages > R
R – Tilde Operator
DataCamp – Formulas in R Tutorial
R for Dummies – How to Use the Formula Interface in R
The R Formula Method: The Good Parts
Verteilungen
Wahrscheinlichkeitsverteilung
Diskrete Wahrscheinlichkeitsverteilung
Stetige Wahrscheinlichkeitsverteilung
Absolutstetige Wahrscheinlichkeitsverteilung
Liste univariater Wahrscheinlichkeitsverteilungen
Kategorie:Absolutstetige Wahrscheinlichkeitsverteilung
Kategorie:Univariate Wahrscheinlichkeitsverteilung
Diskrete
Poisson-Verteilung
Bernoulli-Verteilung (Null-Eins-Verteilung)
Binomialverteilung
Stetige
Stetige Gleichverteilung
Dreiecksverteilung
Exponentialverteilung
Gammaverteilung
YouTube
StatQuest with Josh Starmer
Video Index
Statistics Fundamentals
Linear Models
StatQuest: Logistic Regression in R
DataCamp
R tutorial – Learn R Programming
Week 2
- Samplr Size totally obscured
- Variability not visible
- Statistical evidence
- Statistical significance
- Statistical relevance
- Statistical inference
- Confidence Intervals
- Statistical hypothesis testing, Null-Hypothesis
- p-Values
Statistischer Test / Statistical hypothesis testing / Hypothesis Testing
Statistische Signifikanz / Statistical significance
Mathematische Statistik / Statistical inference
Wilcoxon-Mann-Whitney-Test (Rank Sum Test)
Kruskal-Wallis-Test, H-Test, (Rank Sum Test)
Hypothese (Statistik)
Null hypothesis
Informal inferential reasoning
MathsNZ Students – 3.10 – Formal Inference
YouTube
p-Wert und p-Wert-Grenzen – was leistet ein p-Wert (nicht)?
p-Wert in der Statistik einfach erklärt | Hypothesen-Test | Beispiel | wirtconomy
p-Wert, Nullhypothese, Signifikanzniveau – die Idee erklärt
Hypothesentest, p-Wert und weshalb man damit vorsichtig sein muss
p-Wert: einseitiger und beidseitiger Hypothesentest / Signifikanztest – erklärt
p-Werte sind Zufallsgrößen; Signifikanzniveau
Statistische Tests und der p-Wert
Hypothesentest, Signifikanztest, Ablehnungsbereich mit TR bestimmen | Mathe by Daniel Jungn, M
Students t-Test, Hypothesentest der t-Verteilung, t-Test, Mathe by Daniel Jung
Writing a formal inference – the conclusion
Mann-Whitney-U-Test – Voraussetzungen, Funktionsweise und Interpretation – Daten analysieren in SPSS
Kruskal-Wallis-Test in SPSS – Funktionsweise und Interpretation – Daten analysieren in SPSS (21)
How To… Perform the Mann-Whitney U Test (By Hand)
Boxplot
Khan Academy – Boxplot – Wiederholung
Wikipedia – Box-Plot
Box plot
Konfidenzintervall, Vertrauensintervall, Vertrauensbereich und Erwartungsbereich
Confidence interval
Boxplot erstellen, Median, unteres/oberes Quartil, Minimum, Maximum | Mathe by Daniel Jung
Week 3
- categorical perdictor
- distribution
- deviation
- Gauss / not Gauss
- Residual plots
Regression analysis
Regressionsanalyse
What is Regression Analysis and Why Should I Use It?
Der Klassiker lineare Regression einfach erklärt – Herleitung und Anwendungsbeispiele
Varianzanalyse (ANOVA)
Logarithmische Skalierung
logarithmieren in diagramm
Week 6
Survival Analysis
12. Summarising Time to Event Data
8. Log-Rank Test for Analysing ‘Time to Event’ Data
What is Survival Analysis | Kaplan-Meier Estimation | Time to Event Model
Survival Models: Introduction to Survival Analysis | Data Science
Survival Analysis in R
Kaplan Meier Survival Analysis
Überlebenszeitanalyse mit R, Kaplan-Meier-Kurve, Lograng-Test, Cox-Regression
tranSMART – Schulungsvideo 03 – Überlebenszeitanalyse
Relatives Risiko und Odds Ratio in Beobachtungsstudien – Statistik Teil 7 – AMBOSS Auditor
Week 7
Wikipedia
Customer Lifetime Value (CLV)
Kundenwert
Deckungsbeitrag
Variable Kosten
KUNDENWERT – Was ist eigentlich…?
So berechnest du deinen KUNDENWERT! (CLV)
Fixe Kosten vs. Variable Kosten – einfach erklärt!
Was ist Abzinsen? Erklärt an einem Beispiel Zinsrechnung
Week 8
Youtube search: time series forecasting
Time Series Analysis – 1 | Time Series in Excel | Time Series Forecasting | Data Science|Simplilearn
Beyoncé macht dumm | Korrelation vs. Kausalität
Statistik: Kovarianz und Korrelation: Grundlagen – FernUni Hagen – Wiwi
Streudiagramm und Korrelation
Kausalität
Regression
Bedeutung Korrelationskoeffizient, linearer Zusammenhang | Mathe by Daniel Jung
Korrelation Was ist das?
Korrelation nach Pearson – Voraussetzungen
Bivariate Korrelation in SPSS (Skalenniveau+korrekte Korrelationsmaße) -Daten analysieren in SPSS(8)
Week 9
Forecasting: Moving Averages, MAD, MSE, MAPE
Demand Forecasting (Exponential Smoothing)
Forecasting – Measurement of error (MAD and MAPE) – Example 2
Forecast Accuracy Mean Average Percentage Error (MAPE)
Week 10
Week 11
K – Means Clustering – Fun and Easy Machine Learning
Hierarchical Clustering – Fun and Easy Machine Learning
MESOSworld – Methodological Education for the Social Sciences (Universität Zürich)
Grundlagen
Population und Stichprobe
Population und Stichprobe (PDF)
Univariate Verteilungen
Beschreibung univariater Verteilungen
Grafische Darstellung der Ausprägungen eines Merkmals
Bivariate Verteilungen
Statistik-Nachhilfe
REGRESSIONSANALYSEN (Prädiktor)
EINFAKTORIELLE & MEHRFAKTORIELLE VARIANZANALYSE (ANOVA)
P-WERT, KRITISCHER WERT
NULLHYPOTHESE, ALTERNATIVHYPOTHESE (GEGENHYPOTHESE), GERICHTETE HYPOTHESE, UNGERICHTETE HYPOTHESE
HYPOTHESENTESTS / SIGNIFIKANZTESTS
TESTTHEORIE
ALPHAFEHLER (FEHLER 1. ART), SIGNIFIKANZNIVEAU
ZENTRALER GRENZWERTSATZ
STOCHASTISCHE MASSZAHLEN
Crashkurs Statistik
Grundgesamtheit, Stichprobe, Merkmale
Parameterschätzung
Steve Brunton – Intro to Data Science
- Intro to Data Science: Overview
- Intro to Data Science: Historical Context
- Intro to Data Science: What is Data Science?
- Intro to Data Science: Answering Questions with Data
- Intro to Data Science: The Nature of Data
- Machine Learning Overview
- Machine Learning Goals
- Machine Learning and Cross-Validation
- Types of Machine Learning 1
- Types of Machine Learning 2
- Artificial Intelligence
- Neural Network Overview
- Neural Network Architectures
- Neural Networks and Deep Learning
- Neural Networks: Caveats
- Digital Twins
- Data Visualization: Overview
- Data Visualization: Types of Data
- Data Visualization: Storytelling with Data
- Data Visualization: Buyer Beware
Nominal, Ordinal, Cardinal
M101 Numerals and digits; Cardinal, ordinal and nominal numbers
Scales of Measurement – Nominal, Ordinal, Interval, Ratio (Part 1) – Introductory Statistics
Types of Data: Nominal, Ordinal, Interval/Ratio – Statistics Help
TSM_DataMgmt
An Animated Guide: Knowing SQL Internal Processes makes SQL Easy, makes SQL easy
WHERE-Klausel im Detail
Lecture
Week 3
Postgres Handles More Than You Think
Don’t Do This
B-Baum
AVL-Baum
What is the difference between tree depth and height?
Height, Depth and Level of a Tree
Nested set model
Nested Sets
Jede Menge Bäume
Storing hierarchical data: Materialized Path
Trees in SQL: Nested Sets and Materialized Path
Nested Sets and Materialized Path SQL Trees
Trees in SQL : an approach based on materialized paths and normalization for MySQLTrees in SQL : an approach based on materialized paths and normalization for MySQL
Materialized Path in PostgreSQL
Week 4
Install MongoDB Community Edition on Ubuntu
Week 5
“Schema Later” Considered Harmful
Visualization software
Tableau Software
Superset: enterprise-ready web application for data exploration, data visualization and dashboarding
What does Tableau offer that Apache Superset doesn’t?
Week 6
What is the difference between scale-out versus scale-up (architecture, applications, etc.)?
Week 8
Assoziationsanalyse | Video Based Learning
Apriori-Algorithmus | Business Intelligence | Unsupervised Learning
Frequent Pattern (FP) growth Algorithm for Association Rule Mining
Apriori algorithm with complete solved example to find association rules
data mining fp growth | data mining fp growth algorithm | data mining fp tree example | fp growth
Week 9
ID3
C4.5
Decision tree learning
Decision Tree Classification in R
Week 11
K – Means Clustering – Fun and Easy Machine Learning
Hierarchical Clustering – Fun and Easy Machine Learning
Week 13
Minimal Viable Search using Postgres
Unscharfe Suche, Levenshtein-Distanz, N-Grammen, Soundex
PostgreSQL Full Text Search and Trigram Confusion
Victor Lavrenko – Search Engine
MapReduce – Computerphile
PostgreSQL Full Text Search and Trigram Confusion
13.68 MapReduce, Verarbeitung eines MapReduce Jobs auf einem Cluster Victor Lavrenko – Search Engine
Apache Hadoop
MapReduce
Rest
Step by Step Guide to Dimensional Data Modeling
Introduction to Dimesional Modelling
Business Intelligence: Building Your First Cube
Create First OLAP Cube in SQL Server Analysis Services
Building Your First Data Cube
Dimensional modeling
OLAP-Würfel
OLAP cube
SQL | DDL, DQL, DML, DCL and TCL Commands
Grundbegriffe der Prädikatenlogik
Prolog – Begriffe, (Literal, Klausel, Prädikat)
Wikipedia
Prädikatenlogik
Literale in der mathematischen Logik
Disjunktionsterm
Prädikat (Logik)
Wikipedia
(de)
Relational algebra (en)
Join (SQL) (de)
Join (SQL) (en)
Data Manipulation Language (DML)
Transaction Control Language (TCL)
CRUD
ACID
NoSQL
Dokumentenorientierte Datenbank
Codd’s 12 rules
NULL
NULL in SQL: Platzhalter für fehlende Daten
SQL Functions
Sakila Databas
MySQL Sakila Sample Database
The Sakila Database
github.com/jOOQ/jOOQ/tree/master/jOOQ-examples/Sakila
JOOQ
A Beginner’s Guide to the True Order of SQL Operations
Datenbankenlernen.de – Prof. Dr. Jens Dittrich
Datenbankenlernen.de
13.XX SQL (Playlist)
13.20 Übersicht über Datenbanksysteme: Welches DBMS für was?
13.21a SQL Standards
13.21b SQL Teilsprachen
13.24 SELECT FROM WHERE
13.44 NULL != NULL
13.46 Unteranfragen mit IN, EXISTS, ALL, ANY
13.48 SQL Datentypen
postgresql
PostgreSQL Data Types
PostgreSQL Show Tables
Show tables in PostgreSQL
PostgreSQL Show Databases
Documentation
SELECT DISTINCT, GROUP BY
SQL – select DISTINCT
Is there any difference between GROUP BY and DISTINCT
NoSQL – Graph Databases
OrientDB
Wikipedia
YouTube
OrientDB – the 2nd generation of (MultiModel) NoSQL by Luigi Dell’Aquila
Michael Hackstein: Multi-Model NoSQL Databases
Building on Multi-Model Databases
WEKA
Weka 3: Machine Learning Software in Java
Weka Wiki
WEKA API Tutorial: How to use WEKA in JAVA
The R Project for Statistical Computing (r-project.org)
Windows 10 Boot-Manager (Safe Mode / Abgesicherter Modus)
HP PCs – Abgesicherter Modus von Windows (Windows 10, 8)
bootrec /fixmbr bootrec /fixboot bootrec /scanos bootrec /rebuildbcd
msconfig diskpart
bcdedit /set {default} safeboot minimal
bcdedit /set {default} safeboot network
bcdedit /set {default} safeboot minimal.
bcdedit /set {default} safebootalternateshell yes
bcdedit /deletevalue {default} safeboot
Fix: Boorec /Fixboot Element Not Found on Windows
How to Rebuild the BCD in Windows
Anleitung zum Reparieren des EFI-Bootloaders auf einer GPT-Festplattenlaufwerk für Windows 7, 8, 8.1 und 10 auf Ihrem Dell PC
Gelöst: Das angeforderte Systemgerät kann nicht gefunden werden
Windows 10 – Boot-Manager anpassen, entfernen und reparieren
JavaSE 4, …, 9 Features
JavaSE 4, …, 9 Features
Java 9 Features
Interface Private Methods
Try-With Resources
Anonymous Classes
SafeVarargs Annotation
Collection Factory Methods
Process API Improvement
Version-String Scheme
JShell (REPL)
Module System
Control Panel
Stream API Improvement
Underscore Keyword
Java 8 Features
Lambda Expressions
Method References
Functional Interfaces
Stream API
Stream Filter
Base64 Encode Decode
Default Methods
forEach() method
Collectors class
StringJoiner class
Optional class
JavaScript Nashorn
Parallel Array Sort
Type Inference
Parameter Reflection
Type Annotations
JDBC Improvements
Java 7 Features
Binary Literals
Switch with String
Multi Catch
Try with Resources
Type Inference
Numeric Literals
JDBC
Java 4/5 Features
Assertion
For-each Loop
Varargs
Static Import
Autoboxing
Enums
Annotations
Generics
JavaSE 4, …, 8 Features
JavaSE 8 Features
Java 8 Date/Time API (Java 8)
Lambda Expressions (Java 8)
Method References (Java 8)
Functional Interfaces (Java 8)
Stream (Java 8)
Base64 Encode Decode (Java 8)
Default Methods (Java 8)
forEach method(Java 8)
Collectors(Java 8)
StringJoiner(Java 8)
Optional class (Java 8)
Nashorn JavaScript (Java 8)
Parallel Array Sorting (Java 8)
Type Inference (Java 8)
Method Parameter Reflection (Java 8)
Type annotations and repeating annotations (Java 8)
Java JDBC Improvements (Java 8)
Java IO Improvement (Java 8)
Java Concurrency Improvement (Java 8)
JavaSE 7 Features
String in switch statement (Java 7)
Binary Literals (Java 7)
The try-with-resources (Java 7)
Caching Multiple Exceptions by single catch (Java 7)
Underscores in Numeric Literals (Java 7)
JavaSE 6 Features
Instrumentation (premain method) (Java 6)
J2SE 5 Features
For-each loop (Java 5)
Varargs (Java 5)
Static Import (Java 5)
Autoboxing and Unboxing (Java 5)
Enum (Java 5)
Covariant Return Type (Java 5)
Annotation (Java 5)
Generics (Java 5)
J2SE 4 Features
Assertion (Java 4)