On Windows this is a named pipe and on Unix this is a local domain socket.
QLocalServer Class
QLocalSocket Class
Monthly Archives: April 2020
YouTube: Deeplearning.ai
Neural Networks and Deep Learning (Course 1 of the Deep Learning Specialization)
Neural Networks and Deep Learning (Course 1 of the Deep Learning Specialization)
- Welcome (Deep Learning Specialization C1W1L01)
- What is a Neural Network? (C1W1L02)
- Supervised Learning with a Neural Network (C1W1L03)
- Why is deep learning taking off? (C1W1L04)
- About This Course (C1W1L05)
- Course Resources (C1W1L06)
- Binary Classification (C1W2L01)
- Logistic Regression (C1W2L02)
- Logistic Regression Cost Function (C1W2L03)
- Gradient Descent (C1W2L04)
- Derivatives (C1W2L05)
- More Derivative Examples (C1W2L06)
- Computation Graph (C1W2L07)
- Derivatives With Computation Graphs (C1W2L08)
- Logistic Regression Gradient Descent (C1W2L09)
- Gradient Descent on m Examples (C1W2L10)
- Vectorization (C1W2L11)
- More Vectorization Examples (C1W2L12)
- Vectorizing Logistic Regression (C1W2L13)
- Vectorizing Logistic Regression’s Gradient Computation (C1W2L14)
- Broadcasting in Python (C1W2L15)
- A Note on Python/Numpy Vectors (C1W2L16)
- Quick Tour of Jupyter/iPython Notebooks (C1W2L17)
- Explanation of Logistic Regression’s Cost Function (C1W2L18)
- Neural Network Overview (C1W3L01)
- Neural Network Representations (C1W3L02)
- Computing Neural Network Output (C1W3L03)
- Vectorizing Across Multiple Examples (C1W3L04)
- Explanation For Vectorized Implementation (C1W3L05)
- Activation Functions (C1W3L06)
- Why Non-linear Activation Functions (C1W3L07)
- Derivatives Of Activation Functions (C1W3L08)
- Gradient Descent For Neural Networks (C1W3L09)
- Backpropagation Intuition (C1W3L10)
- Random Initialization (C1W3L11)
- Deep L-Layer Neural Network (C1W4L01)
- Forward Propagation in a Deep Network (C1W4L02)
- Getting Matrix Dimensions Right (C1W4L03)
- Why Deep Representations? (C1W4L04)
- Building Blocks of a Deep Neural Network (C1W4L05)
- Forward and Backward Propagation (C1W4L06)
- Parameters vs Hyperparameters (C1W4L07)
- What does this have to do with the brain? (C1W4L08)
Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization (Course 2 of the Deep Learning Specialization)
- Train/Dev/Test Sets (C2W1L01)
- Bias/Variance (C2W1L02)
- Basic Recipe for Machine Learning (C2W1L03)
- Regularization (C2W1L04)
- Why Regularization Reduces Overfitting (C2W1L05)
- Dropout Regularization (C2W1L06)
- Understanding Dropout (C2W1L07)
- Other Regularization Methods (C2W1L08)
- Normalizing Inputs (C2W1L09)
- Vanishing/Exploding Gradients (C2W1L10)
- Weight Initialization in a Deep Network (C2W1L11)
- Numerical Approximations of Gradients (C2W1L12)
- Gradient Checking (C2W1L13)
- Gradient Checking Implementation Notes (C2W1L14)
- Mini Batch Gradient Descent (C2W2L01)
- Understanding Mini-Batch Gradient Dexcent (C2W2L02)
- Exponentially Weighted Averages (C2W2L03)
- Understanding Exponentially Weighted Averages (C2W2L04)
- Bias Correction of Exponentially Weighted Averages (C2W2L05)
- Gradient Descent With Momentum (C2W2L06)
- RMSProp (C2W2L07)
- Adam Optimization Algorithm (C2W2L08)
- Learning Rate Decay (C2W2L09)
- Tuning Process (C2W3L01)
- Using an Appropriate Scale (C2W3L02)
- Hyperparameter Tuning in Practice (C2W3L03)
- Normalizing Activations in a Network (C2W3L04)
- Fitting Batch Norm Into Neural Networks (C2W3L05)
- Why Does Batch Norm Work? (C2W3L06)
- Batch Norm At Test Time (C2W3L07)
- Softmax Regression (C2W3L08)
- Training Softmax Classifier (C2W3L09)
- The Problem of Local Optima (C2W3L10)
- TensorFlow (C2W3L11)
Structuring Machine Learning Projects (Course 3 of the Deep Learning Specialization)
Structuring Machine Learning Projects (Course 3 of the Deep Learning Specialization)
- Improving Model Performance (C3W1L01)
- Orthogonalization (C3W1L02 )
- Single Number Evaluation Metric (C3W1L03)
- Satisficing and Optimizing Metrics (C3W1L04)
- Train/Dev/Test Set Distributions (C3W1L05)
- Sizeof Dev and Test Sets (C3W1L06)
- When to Change Dev/Test Sets (C3W1L07)
- C3W1L08 WhyHumanLevelPerformance
- Avoidable Bias (C3W1L09)
- Understanding Human-Level Performance? (C3W1L10)
- Surpassing Human-Level Performance (C3W1L11)
- Improving Model Performance (C3W1L12)
- Carrying Out Error Analysis (C3W2L01)
- Cleaning Up Incorrectly Labelled Data (C3W2L02)
- Build First System Quickly, Then Iterate (C3W2L03)
- Training and Testing on Different Distributions (C3W2L04)
- Bias and Variance With Mismatched Data (C3W2L05)
- Addressing Data Mismatch (C3W2L06)
- Transfer Learning (C3W2L07)
- Multitask Learning (C3W2L08)
- What is end-to-end deep learning? (C3W2L09)
- Whether to Use End-To-End Deep Learning (C3W2L10)
Convolutional Neural Networks (Course 4 of the Deep Learning Specialization)
Convolutional Neural Networks (Course 4 of the Deep Learning Specialization)
- C4W1L01 Computer Vision
- C4W1L02 Edge Detection Examples
- C4W1L03 More Edge Detection
- C4W1L04 Padding
- C4W1L05 Strided Convolutions
- C4W1L06 Convolutions Over Volumes
- C4W1L07 One Layer of a Convolutional Net
- C4W1L08 Simple Convolutional Network Example
- C4W1L09 Pooling Layers
- C4W1L10 CNN Example
- C4W1L11 Why Convolutions
- C4W2L01 Why look at case studies?
- C4W2L02 Classic Network
- C4W2L03 Resnets
- C4W2L04 Why ResNets Work
- C4W2L05 Network In Network
- C4W2L06 Inception Network Motivation
- C4W2L07 Inception Network
- C4W2L08 Using Open Source Implementation
- C4W2L09 Transfer Learning
- C4W2L10 Data Augmentation
- C4W2L11 State of Computer Vision
- C4W3L01 Object Localization
- C4W3L02 Landmark Detection
- C4W3L03 Object Detection
- C4W3L04 Convolutional Implementation Sliding Windows
- C4W3L06 Intersection Over Union
- C4W3L07 Nonmax Suppression
- C4W3L08 Anchor Boxes
- C4W3L09 YOLO Algorithm
- C4W3L10 Region Proposals
- C4W4L01 What is face recognition
- C4W4L02 One Shot Learning
- C4W4L03 Siamese Network
- C4W4L04 Triplet loss
- C4W4L05 Face Verification
- C4W4L06 What is neural style transfer?
- C4W4L07 What are deep CNs learning?
- C4W4L08 Cost Function
- C4W4L09 Content Cost Function
- C4W4L10 Style Cost Function
- C4W4L11 1D and 3D Generalizations
Sequence Models (Course 5 of the Deep Learning Specialization)
Sequence Models (Course 5 of the Deep Learning Specialization)
- C5W3L01 Basic Models
- C5W3L02 Picking the most likely sentence
- C5W3L06 Bleu Score (Optional)
- C5W3L07 Attention Model Intuition
- C5W3L08 Attention Model
- C5W3L09 SpeechRecog
Youtube: Skyentific
Skyentific, EPFL
Skyentific (Playlist)
- Small affordable 6DoF 3D printed robotic arm
- Is it the best DIY 3D printed robotic arm? Precision, speed and payload test.
- 6DoF mostly 3D Printed Robot Arm (Part 1)
- 6DoF mostly 3D Printed Robot Arm (Part 2)
- 6DoF mostly 3D Printed Robot Arm (Part 3)
- 6DoF mostly 3D Printed Robot Arm (Part 4)
- 6DoF mostly 3D Printed Robot Arm (Part 5) New electronics!
- 6DoF mostly 3D Printed Robot Arm (Part 6) Arduino code!
- Robot Arm programmed and controlled with SmartPhone (Bluetooth)
- Three examples of using Robot Arm (Serious stuff)
- PID demo
- TUTORIAL: ODrive Brushless Motor with Raspberry Pi and Arduino
- DIY: High Five Robot (Brusless Motor + ODrive + Arduino)
- High Five Robot vs Egg and Tomato (Brushless motor + ODrive + Arduino)
- Fast Force Feedback for Brushless Motor (ODrive + Arduino)
- DIY: Gearbox for Brushless Motor (ODrive + Arduino)
- Another 7-axis (7DoF) Brushless Robot Arm (part 3)
- Side Project: Simple Axis 1 (Alternative Easy Axis1)
- Another 7-axis (7DoF) Brushless Robot Arm (part 4)
sonic-vision.TV
11. Digitaltechnik und digitale Mischpulte
11. Digitaltechnik und digitale Mischpulte
- 11.1 Was ist Digitaltechnik?
- 11.2 Zahlensysteme
- 11.3 Rechnen mit digitalen Audiodaten
- 11.4 Abtastung / Zeitquantisierung
- 11.5 Spannungsquantisierung
- 11.6 Digitale Pegel
- 11.7 Codierung
- 11.8 Fehlerkorrektur und Interleaving
- 11.9 Digitale Audiotechnik im Überblick
- 11.10 Übertragung von digitalem Audio
- 11.11 Datenkompression
- 11.12 Hohe Abtastraten und Bittiefen
- 11.13 Yamaha 01V96 – Teil 1
- 11.14 Yamaha 01V96 – Teil 2
Mathe by Daniel Jung
Fourier-Analyse, Fourierreihen, Fouriertransformation
Fourier-Analyse, Fourierreihen, Fouriertransformation
- Fourierreihe, Übersicht, Fourier-Analyse, Reihenentwicklung, Unimathematik
- Fourier-Analyse, Vorbereitung, Grundlagen, Vokabeln, Übersicht, Unimathematik
- Fourierreihen, Vorbereitung, Signal, Zeit, Frequenz, Fourier-Analyse
- Fourierreihen, Vorbereitung, Sinus-/Kosinusgrundlagen, trigonometrische Funktionen
- Fourierreihen, Vorbereitung, Transformation von Funktionen, Fourier-Analyse
- Fourierreihe als Linearkombination, Fourier-Analyse, Unimathematik
- Fourierreihe als Linearkombination, komplex mit Euler, Fourier-Analyse
- Fouriertransformation, ganz grobe Übersicht, Fourier-Analyse, Unimathematik
- Fourierreihe, Fouriertransformation, Schnellübersicht, Fourier-Analyse
- Indexschreibweisen bei Fourier und Frequenz, Fourier-Analyse, Fourierreihe
- Periode, Frequenz, Trigonometrische Funktion, Fourier-Analyse, Fourierreihe
- Fourierreihe als Basiswechsel, Beispiel, Fourier-Analyse, Reihenentwicklung
- Fourier-Analyse, vom Zeitsignal zum Spektrum, Beispiel, Unimathematik
- Fourier-Analyse, vom Zeitsignal zum Spektrum, Fourier-Transformation
- Fourier-Analyse, Vorbereitung, Folgen, Reihen, Vektorraum, Unimathematik
- Fourier-Analyse, Vorbereitung, Integralgrundlagen, Unimathematik
- Fourier-Analyse, Vorbereitung, Komplexe Zahlen, Unimathematik
- Fourierreihe, Warum unendlich, Beispiel mit Gerade, Fourier-Analyse
- Fourierreihe, Übersicht, Beispiel mit Gerade, Unimathematik, Fourier-Analyse
- Fourier Reihe, wieder mal optische Bastelei, Video nach Frequenz
- Fourier, Faszination Fourierreihe, Funktionen basteln, approximieren
- Fourierreihe, ungerade, gerade Funktionen erkennen, wichtig für an und bn
- Fourierreihe, Verständis trigonometrische Funktionen, Beispiel mit Gerade
- Fourierreihe, Formel mit a0 oder a0 geteilt durch 2, beides geht:)
- Fourier Koeffizienten berechnen, Formeln, Fourierreihe, Fourier-Analyse
- Fourierreihe, Schreibweise mit Sinus, Kosinus, Summenzeichen, Fourier-Analyse
- Abwandlung Schreibweise bei Fourier Koeffizienten, mit n oder k…, Unimathematik
- Fourierreihe, Schreibweise mit Euler, Fourier-Analyse, Komplexe Form
- Fourierreihe, Schreibweise Euler, Vektorraumhintergrund, Fourier-Analyse
- Fourier Koeffizienten, Komplex, Fourier-Analyse, komplexe Fourierreihe
- Fourierreihe, Werte verstehen, Beispiel mit Gerade, Fourier-Analyse
- Fourierreihe, a0 berechnet, Beispiel mit Gerade, Fourier-Analyse
- Fourierreihe, an und bn berechnen, Beispiel mit Gerade, Fourier-Analyse
- Fourierreihe, Achtung für 1 & -1!!!, Beispiel mit Gerade steht noch 2 & -2
- Fourierreihe, Werte, Achtung für 1 und -1!!!, Beispiel mit Gerade, Fourier-Analyse
- Fourierreihe, Muster erkennen, Achtung für 1 und -1!!!, Beispiel mit Gerade
- Fourier-Analyse, Auswirkung Tiefpassfilter, Unimathematik, Zeit, Signal, Spektrum
- Fourier-Analyse, Periodisches Signal als Funktion & Grundfrequenz
- Fourier-Analyse, Periodisches Signal als Funktion, Zusatznotiz, Unimathematik
- Fourier-Analyse, Spielerei mit komplexer Reihe, Vorarbeit Fourier-Transformation
- Fourier-Analyse, Transformation, Analyse, Synthese, Unimathematik
- Fourier-Analyse, Transformierte, Inverse, Schreibweise Alternative wegen 2 Pi mit Wurzel
- Fourier-Analyse, Transformierte, Inverse, Schreibweise, Unimathematik
- Fourier, Übersicht, Zusammenhänge, Vokabeln
- Reihen, Konvergenz, Wurzelkriterium, Quotientenkriterium
Qt CMake
Qt+Cmake (Playlist)
QtWS19: Using CMake and vcpkg in Qt application development
Using Modern CMake with Qt
New
CMake and Qt (Part 1) – CMake Introduction
CMake and Qt (Part 2) – Qt6 switches to CMake
CMake and Qt (Part 3) – Hello World in CMake
CMake and Qt (Part 4) – Using Libraries with CMake
Old
Getting Started with C++, Qt5 and CMake: Part 1
Getting Started with C++, Qt5 and CMake: Part 2
Getting Started with C++, Qt5 and CMake: Part 3
Getting Started with C++, Qt5 and CMake: Part 4
Getting Started with C++, Qt5 and CMake: Part 5
gdbgui
Jobs
Qt JSON
Python C and C++ Extensions
Extending Python with C or C++
Building C and C++ Extensions
Unleash The Power of C++ In Python, 11.07.2019
Joe Jevnik – How to Write and Debug C Extension Modules – PyCon 2017, 18.05.2017
Cython Tutorial – Bridging between Python and C/C++ for performance gains, 10.07.2017
Python3 Advanced Tutorial 9 – C Extensions, 23.07.2015
Anaconda compiler tools
How to install Python support in Visual Studio on Windows
WindowsCompilers