PES4

SparkFun 9DoF Razor IMU M0
9DoF Razor IMU M0 Hookup Guide
MPU-9250 Hookup Guide
MPU-9250
Accelerometer, Gyro and IMU Buying Guide
SensorWiki.org: Gyroscope

  • Schollenberger (scol)
  • Nussberger (nusm)

Zero-Velocity Detection — An Algorithm Evaluation
Zero-velocity detection in pedestrian navigation systems—an algorithm evaluation
A Novel Vehicle Stationary Detection Utilizing Map Matching and IMU Sensors

  • accelerationmoving variance detector
  • acceleration magnitude detector
  • angular rate energy detector

Kinematische Ketten
ARYS Pro
antiallergene Materialien

Seite 17

  • Koppelnavigation (englisch: dead reckoning)
  • Bewegungsspuren = zurückgelegte Strecke eines Fußgängers
  • Schrittvektoren = relative Positionsänderung eines Schrittes
  • GPS = Triangulation
  • Seefahrt => Geschwindigkeit, die Richtung und die Zeit => relative Positionsänderung
  • über die Zeit eine größer werdende Ungenauigkeit in der Positionierung
  • sechs physikalische Freiheitsgrade
  • drei Freiheitsgraden der Translation => Bewegung des Schwerpunktes
  • drei Freiheitsgraden der Rotation => Drehbewegungen um den Schwerpunkt
  • Gyroskopen => Messung der Rotation
  • Beschleunigungssensoren => Messung der Translation
  • Der hier vorgestellte Entwurf basiert auf der Erfassung der Bewegungsspuren mittels auf dem Fuß befestigter IMU.
  • Zero-velocity updates (ZUPT)
  • menschlichen Gang => Stand- und einer Geh-Phase
  • Mit ZUPT wird nun versucht die Stand-Phase zu erkennen. Die Geschwindigkeit wird dann
    auf 0 zurückgesetzt.
  • Korridore meist parallel oder orthogonal zu Außenwänden
  • Fox05: E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. Computer
    Graphics and Applications, IEEE, 25(6):38–46, 2005. (Zitiert auf den Seiten 12, 16
    und 17)
  • Wik13a: Wikipedia. Kalman filter
  • NSHH12: J.-O. Nilsson, I. Skog, P. Handel, K. Hari. Foot-mounted INS for everybodyan
    open-source embedded implementation. In Position Location and Navigation
    Symposium (PLANS), 2012 IEEE/ION, S. 140–145. IEEE, 2012. (Zitiert auf den
    Seiten 12, 16 und 17)
  • FTSH13: C. Fischer, P. Talkad Sukumar, M. Hazas. Tutorial: Implementing a Pedestrian
    Tracker Using Inertial Sensors. Pervasive Computing, IEEE, 12(2):17–27, 2013.
    (Zitiert auf Seite 17)
  • JSZ+12: A. R. Jiménez, F. Seco, F. Zampella, J. C. Prieto, J. Guevara. Improved heuristic
    drift elimination with magnetically-aided dominant directions (MiHDE) for
    pedestrian navigation in complex buildings. Journal of Location Based Services,
    6(3):186–210, 2012. (Zitiert auf den Seiten 18 und 19)

imu drift compensation position

IMU sensor and compensation
Quaternion IMU Drift Compensation: Accelerometer

Drehratensensor
Eulersche Winkel
Gimbal Lock
Inertiale Messeinheit
Magnetometer
Trägheitsnavigationssystem
Koppelnavigation
Gleitender Mittelwert, Moving Average, Moving Median, Digitale Signal Verarbeitung (Digital Signal Processing DSP)

sparkfun/MPU-9150_Breakoutfirmware/MPU6050/Examples/MPU9150_AHRS.ino
IMU Brick
IMU Brick 2.0
Affordable 9 DoF Sensor Fusion, 30 Jan 2016

ardumower.de: Kompaß, Beschleunigung, Gyro
ardumower.de: Rasensensor
CH Robotics Library

Books

Multisensor Attitude Estimation: Fundamental Concepts and Applications

Old

SparkFun 9DOF Razor IMU w/AHRS
AVR910: In-System Programming using mbed
Luke Petre / RazorAHRS

Position Tracking IMU

  • Attitude and Heading Reference System (AHRS)
  • Inertial Navigation System (INS)
  • Inertial Measurement Unit (IMU)
  • direction-cosine-matrix (DCM)
  • magnetic angular rate and gravity (MARG)
  • Kalman Filter
  • Complementary Filter
  • Mahony Filter
  • Madgwicks Fusion Algorithmus
  • Madgwick Filter
  • Sigma-Punkt Filter
  • Bias Filter
  • Zustandsraummodell
  • Schätzfehler
  • Taylorentwicklung
  • Taylorapproximation
  • Divergenz
  • Modellfunktion

Trägheitsnavigation

Guide to gyro and accelerometer with Arduino including Kalman filtering
cccgoe.de Trägheitsnavigation
OpenShoe – Foot-mounted INS for Every Foot
Building an AHRS using the SparkFun “9DOF Razor IMU”
Reading data from/Interfacing with 9DOF Razor IMU
razor_imu_9dof
github: KristofRobot/razor_imu_9dof
MPU-9250 and Arduino (9-Axis IMU)

Calculating displacement using Accelerometer and Gyroscope (MPU6050)
Using accelerometer, gyroscope and compass to calculate device’s movement in 3D world
NXP: Implementing Positioning Algorithms Using Accelerometers (PDF)

Open source IMU and AHRS algorithms
Open source AHRS with x-IMU
github.com: xioTechnologies/Open-Source-AHRS-With-x-IMU
IEEE International Conference on Rehabilitation Robotics 2011: Estimation of IMU and MARG orientation using a gradient descent algorithm

Calculating position displacement using accelerometer and Gyroscope?
Direction Cosine Matrix IMU: Theory
A free and open implementation of DCM based on FreeIMU
FreeIMU: an Open Hardware Framework for Orientation and Motion Sensing
Understanding the various attitude estimation methods
How to determine position from gyroscope and accelerometer input?

A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications., Dec 2009
Arduino code for IMU Guide algorithm. Using a 5DOF IMU (accelerometer and gyroscope combo), Jan 2010
DCM Tutorial – An Introduction to Orientation Kinematics, May 27, 2011

Guide: Gyro and Accelerometer Kalman filtering, with the Arduino, June 14th, 2011
github.com: TKJElectronics/Example-Sketch-for-IMU-including-Kalman-filter

ENTWICKLUNGUND TEST EINES INERTIAL VIGATIONSYSTEMS IN EINER SCHMELZSONDE DES RANGE PROJEKTS (PDF)

Kalman Filter

Kalman-Filter verstehen – Literatur gesucht
Das Kalman-Filter einfach erklärt [Teil 1]
Das Kalman Filter einfach erklärt [Teil 2]
Das Extended Kalman Filter einfach erklärt
Kalman Filter For Dummies
OlliW.eu: IMU Data Fusing: Complementary, Kalman, and Mahony Filter
Combine Gyroscope and Accelerometer Data
Tracking 2D positioning with IMU Sensor
Tracking Position in 3d space using 10-DOF IMU
Kalman-Filter
Reading a IMU Without Kalman: The Complementary Filter
Kalman filter vs Complementary filter
Koppelnavigation
Dead reckoning
Filter mit endlicher Impulsantwort (FIR-Filter)

Kalman Filter Simulation
Kalman-Filter (Simulation)

Design and use Kalman filters in MATLAB and Simulink
Estimating Position of an Aircraft using Kalman Filter

Videos

Tutorial: Kalman Filter with MATLAB example part1
MPU-6050 6dof IMU tutorial for auto-leveling quadcopters with Arduino source code
MPU-6050 6dof IMU tutorial for auto-leveling quadcopters with Arduino source code – Part 2
3D Orientation-Rotation Tracking using MPU9250
IMU 9-axis MPU9250 and Madgwick’s AHRS Algorithm
MPU 9250 data display on MATLAB
3D Tracking with IMU
GoogleTechTalks: Sensor Fusion on Android Devices: A Revolution in Motion Processing

Electronics

TE Connectivity (TE)
Measurement Specialties (MEAS) MS5611-01BA – high resolution altimeter

This barometric pressure sensor is optimized for altimeters and variometers with an altitude resolution of 10 cm

Sound

Adafruit I2S MEMS Microphone Breakout
Adafruit I2S MEMS Microphone Breakout – Arduino Wiring & Test
github.com/adafruit/Adafruit_ZeroI2S
Arduino Sound library
I2S (de)
I2S (en)
WAV (en)
Inter-IC Sound (I2S / PCM)
I2S bus specification (PDF)
I2S and PCM format
i2s format and PCM format
I2S and PCM format
High Quality Audio with I2S – Part 1
High Quality Audio with I2S – Part 3
ArduinoDueHiFi
Audio playback and recordin
g using the STM32F4DISCOVERY

github.com/TMRh20/TMRpcm
Adafruit Wave Shield for Arduino Kit – v1.1
waverp – An Arduino Library for recording and playing wave files on the Adafruit Wave Shield
Arduino recording .wav files ?

Leave a Reply

Your email address will not be published. Required fields are marked *